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ACTIVE VIBRATION CONTROL OF COMPOSITE
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ELEMENT MODEL WITH THIRD ORDER THEORY
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A finite element model based on third order laminate theory is developed for the active
position control and vibration control of composite beams with distributed peizoelectric
sensors and actuators. The direct peizoelectric equation is used to calculate the total charge
created by the strains on the sensor electrodes; and the actuators provide a damping effect
on the composite beam by coupling a negative velocity feedback control algorithm in a
closed control loop. The shape control and active vibration suppression of a cantilever
composite beam are performed to verify the proposed model. A modal superposition
technique and the Newmark-b method are used in the numerical analysis to compute the
dynamic response of composite beams. Finally, the effects of the number and locations of
the sensors/actuators on the control system are also investigated.
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1. INTRODUCTION

Usually, satellites and other large-scale space structures have low flexural rigidity and are
lightly damped due to the small material damping and the lack of other forms of damping
in the space. This may lead to destructive large amplitude vibration and long vibration
decay times and thus result in fatigue, instability and poor operation of the structures.
Attempts at solving these problems have recently stimulated extensive research into smart
structures and systems.

A smart structure can be defined as a structure or structural component with bonded
or embedded sensors and actuators as well as an associated control system, which enable
the structure to respond simultaneously to external stimuli exerted on it and then suppress
undesired effects or enhance desired effects. This technique improves the performance of
existing structures and opens opportunities for radical changes in the design of adaptive
structures, high performance structures, high precision systems, etc. Moreover, recent
advances in design and manufacturing technologies of piezoelectric sensors and actuators
have enhanced the efficiency of smart systems.

Piezoelectric materials, such as lead zirconate titanate (PZT), have coupled mechanical
and electrical properties. They exhibit mechanical deformation when subjected to an
applied electric field, which is called the converse piezoelectric effect. They also generate
a voltage or charge when subjected to a force or deformation, which is termed as the direct
piezoelectric effect. Bonding or embedding piezoelectric patches in a structure can act as
sensors to monitor or as actuators to control the response of the structure. However, before
piezoelectric sensors and actuators can be incorporated into a smart system, the
mechanical interaction between the piezoelectrics and the underlying structure must be well
understood. Several investigators have recently developed analytical and numerical linear
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or non-linear models for the responses of integrated piezoelectric structures [1–9]. These
models offer a platform to explore the active vibration control in smart structures.

Bailey and Hubbard [1] have successfully used piezoelectric sensors and actuators in the
vibration control of isotropic cantilever beams. Based on the classical laminated plate
theory, Lee [7] presented a mathematical model for distributed sensors and actuators and
used this model in the vibration control of laminated structures. Shen [10] developed an
analytical model for the prediction and control of bending and torsional vibration
response of a composite beam with piezoelectric damping treatments. Shi and Atluri
[11] presented a scheme for active control of non-linear vibration of space structures,
wherein each member was modelled as a beam-column. Additionally, by integrating
certain feedback control loops, some finite element models were also developed for
the active vibration control or suppression of structures with distributed piezoelectrics
[12–18].

Tzou [12] proposed a general theory on the distributed sensing and active vibration
suppression using piezoelectrics and then developed an equivalent finite element
formulation for elastic or flexible manipulators. Tzou and Tseng [13] also presented a
piezoelectric finite element model with internal degrees of freedom for modelling the
flexibility and versatility, and used it in the analysis of the measurement/control of
distributed parameter systems. Ha et al. [14] developed a three-dimensional brick element
to model the dynamic and static response of laminated composites containing distributed
piezoelectrics, and then studied the active response control of the integrated structures by
coupling simple control algorithms in a closed loop. Based on the classical theory, Hwang
and Park [15] studied the vibration control of a laminated plate using a four-node
quadrilateral element with one electrical degree of freedom. Chandrashekhara et al. [16,
17] developed a piezoelectric finite element model based on a first order shear deformation
theory and analyzed the thermally induced vibration suppression of laminated plates with
piezoelectric sensors and actuators. Shieh [18] proposed a finite element model for
multi-axially active laminated piezoelectric beam elements capable of spontaneously
sensing/actuating all axial extension, biaxial bending and torsional twisting of beam
deformation.

However, the accuracy and efficiency of active vibration control or suppression
models depend on the perfection of understanding the mechanical interaction between
the piezoelectrics and the underlying structure. The classical theory used to model the
beam deformation is based on the Kirchhoff–Love assumption and thus neglects the
transverse shear deformation effects; on the other hand, the main drawback of the
shear deformation theory is that it needs a shear correction factor, which is very difficult
to determine especially for arbitrarily laminated composite structures with piezoelectric
layers. To overcome the above-mentioned drawbacks, Reddy et al. [4–6] developed a
third order laminate theory, which accommodates quadratic variation of transverse
shear strains and eliminates the transverse shear stresses on the top and bottom of a
laminated composite structure. Thus no shear correction factor is needed in the third order
theory.

In the present work, a finite element model based on third order laminate theory is
developed for the active vibration control of composite beams with distributed
piezoelectric sensors and actuators. A simple negative velocity feedback control algorithm
is coupled in a close control loop. The shape control and active vibration suppression of
a cantilever composite beam are performed to demonstrate the presented model. A modal
superposition technique and the Newmark-b method are used to calculate the dynamic
response. Finally, the effects of the number and locations of the sensors/actuators on the
control system are also evaluated.
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2. PIEZOELECTRIC EQUATIONS

It is assumed that the thermal effect is not considered in the analysis. The linear
piezoelectric coupling between the elastic field and the electric field can be expressed by
the direct and the converse piezoelectric equations respectively [19]:

{D}=[e]{o}+[o]{E}, {s}=[Q]{o}−[e]T {E} (1, 2)

where {s} is the stress vector, [Q] is the elastic stiffness matrix, {o} is the strain vector,
[e] is the piezoelectric constant matrix, [e]T is the transpose of [e], {E} is the electric field
vector, {D} is the electric displacement vector and [o] is the permittivity matrix. The
superscript ‘‘T’’ denotes the transpose of a vector or matrix.

Assuming that a laminated beam consists of a number of layers (including the
piezoelectric layers) and each layer possesses a plane of material symmetrically parallel to
the x–y plane, the constitutive equations for the kth layer can be written as

6D1

D3 7k

=$ 0
e31

e15

0 %k 6o1

o5 7k

+$o11

0
0
o33 %k 6E1

E3 7k

, (3)

6s1

s5 7k

=$Q11

0
0

Q55 %k 6o1

o5 7k

−$ 0
e15

e31

0 %k 6E1

E3 7k

, (4)

where the Qii are the reduced elastic constants of the kth layer:

Q11 =
E11

1− n12 n21
, Q55 =G13,

where E11 is the Young’s modulus and G13 is the shear modulus.
The piezoelectric constant matrix [e] can be expressed in terms of the piezoelectric strain

constant matrix [d] as

[e]= [d] [Q], (5)

where

[d]=$ 0
d31

d15

0 %. (6)

3. FINITE ELEMENT MODEL

3.1.       

The displacement field based on the third order beam theory of Reddy [6] is given by

u(x, z, t)= u0 (x, t)+ zfx (x, t)− az30fx +
1w0

1x 1, (7)

w(x, z, t)=w0 (x, t), (8)

where u and w are the displacement components in the x and z directions respectively, u0

and w0 are the midplane displacements and fx is the bending rotation of x-axis, a=4/(3h2)
and h is the total thickness of the beam.
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The displacement functions are approximated over each finite element by

u0 (x, t)= s
2

i=1

ui (t)ci (x), (9)

fx (x, t)= s
2

i=1

fi (t)ci (x), (10)

w0 (x, t)= s
4

i=1

Di (t)8i (x), (11)

where the ci are the linear Lagrangian interpolation polynomials and the 8i are the cubic
Hermit interpolation polynomials. D1 and D3 represent nodal values of w0, whereas D2 and
D4 represent nodal values of 1w0 /1x.

We define

{u}= {u w}T, {ū}= {u1 f1 D1 D2 u2 f2 D3 D4}T.

Then equations (7) and (8) can also be expressed as

{u}=[N]{ū}, (12)

where

K Lc1 0 T

H H
(z− az3)c1 0H H

H H−az3 181

1x
81

H H
H H

−az3 182

1x
82H H

H H[N]=
c2 0

. (13)

H H
(z− az3)c2 0H H

H H−az3 183

1x
83

H H
H H

−az3 184

1x
84k l

The strain–displacement relations are given by

{o}=6o1

o57=[B]{ū}, (14)
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where
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3.2.  

The dynamic equations of a piezoelectric structure can be derived by using Hamilton’s
principle:

d g
t2

t1

[T−U+W] dt=0, (16)

where T is the kinetic energy, U is the strain energy, and W is the work done by the applied
forces. Here the electric force due to the applied charge of the actuator is not considered.

The kinetic energy at the element level is defined as

Te = 1
2 gVe

r{u̇}T{u̇} dV, (17)

where Ve is the volume of the beam element.
The strain energy can be written as

Ue = 1
2 gVe

{o}T{s} dV. (18)

The work done by the external forces is

We =gVe

{u}T{ fb} dV+gS1

{u}T{ fs} dS+ {u}T { fc}, (19)

where { fb} is the body force, S1 is the surface area of the beam element, { fs} is the surface
force and { fc} is the concentrated load.

The electric field vector {E} is defined by the electrical potential energy f as

E=−9f, (20)

where 9 denotes the gradient operator.
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When an actuator layer with thickness hA is applied a voltage Ve only in the thickness
direction, the electric field vector {E} can be expressed as

{E}= {0 Ve/hA}T = [0 1/hA ]TVe =[Bv ]Ve. (21)

Substituting equations (17)–(19) into equation (16) and using equations (12), (14) and
(21), the dynamic matrix equations can be written as

[Me]{ū� }e +[Ke]{ū}e = {F}e +[Ke
uv ]Ve, (22)

where

[Me]=gVe

r[N]T[N] dV, (23)

[Ke]=gVe

[B]T[Q] [B] dV, (24)

[Ke
uv ]=gVe

[B]T[e]T[Bv ] dV, (25)

{Fe}=gVe

[N]T{ fb} dV+gS1

[N]T{ fs} dS+[N]T{ fc}. (26)

In order to include the damping effects, Rayleigh damping is assumed. Accordingly,
equation (22) is modified as

[Me]{ū� }e +[Ce]{ū� }e +[Ke]{ū}e = {F}e +[Ke
uv}Ve, (27)

where [Ce] is the damping matrix, which is the form of

[Ce]= a[Me]+ b[Ke], (28)

where a and b are constants that can be determined from experiments [20].
Assembling all the elemental equations gives the global dynamic equation

[M]{ū� }+[C]{ū� }+[K]{ū}= {F}+ {FV}, (29)

where {F} is the external mechanical force vector and {FV} is the electrical force vector:

{FV}=[Kuv]{V}. (30)

3.3.  

Since no external electric field is applied to the sensor layer and as charge is collected
only in the thickness direction, only the electric displacement D3 is of interest and can be
derived from equation (3) as

D3 = e31 o1. (31)

The total charge developed on the sensor surface is the spatial summation of all the point
charges on the sensor layer. Hence, the closed circuit charge measured through the
electrodes of a sensor patch in the kth layer is

q(t)= 1
2 $gS2(z= zk )

D3 dS+gS2(z= zk+1)

D3 dS%, (32)
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where S2 is the effective surface electrode of the patch, which defines the integration domain
where all the points are covered with surface electrode on both sides of the sensor lamina.
In the present work, it is assumed that the whole piezoelectric lamina serves as the effective
surface electrode.

Assuming that the sensor patch covers several elements, the total charge q(t) can be
written as follows:

q(t)= s
Ns

j=1

1
2 $gSj(z= zk)

D3 dS+gSj(z= zk+1)

D3 dS%
= s

Ns

j=1

1
2 $gSj(z= zk)

e31 o1 dS+gSj(z= zk+1)

e31 o1 dS%, (33)

where Ns is the number of elements, and Sj is the surface of the jth element.
Using equation (14), equation (33) can be rewritten as

q(t)= s
Ns

j=1

1
2 $gSj

([B1](z= zk) + [B1](z= zk+1))e31 dS{ūj}%, (34)

where [B1] is the first row of [B].
The current on the surface of a sensor can be expressed as

i(t)=dq(t)/dt. (35)

When the piezoelectric sensors are used as strain rate sensors, the current can be
converted into the open circuit sensor voltage output VS by

VS (t)=Gc i(t)=Gc
dq(t)
dt

, (36)

where Gc is the gain of the current amplifier.

Figure 1. A cantilever composite beam with surface-bonded piezoelectric sensors and actuators.
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3.4.    

The distributed sensor generates a voltage when the structure is oscillating; and this
signal is fed back into the distributed actuator using a control algorithm, as shown
in Figure 1. The actuating voltage under a constant gain control algorithm can be
expressed as

Ve =Gi VS =Gi Gc
dq
dt

, (37)

where Gi is the gain to provide feedback control.
Substituting equation (34) into equation (37) yields

Ve =G s
Ns

j=1

[Kj
v ]{ū� j}, (38)

where

[Kj
v ]= 1

2 gSj

([B1](z= zk) + [B1](z= zk+1))e31 dS, (39)

G=Gi Gc . (40)

Therefore, the system actuating voltages can be written as

{V}=[G] [Kv]{ū
· }, (41)

where [G] is the control gain matrix.
In the feedback control, the electrical force vector {Fv} can be regarded as a feedback

force. Substituting equation (41) into equation (30) gives

{Fv}=[Kuv] [G] [Kv]{ū
· }. (42)

We define

[C*]=−[Kuv] [G] [Kv]. (43)

Thus, the system equation of motion equation (29) becomes

[M]{ū� }+([C]+ [C*]){ū· }+[K]{ū}= {F}. (44)

As shown in equation (44), the voltage control algorithm equation (37) has a damping
effect on the vibration suppression of a distributed system.

To obtain the dynamic response under a given external loading condition, a modal
analysis is used, and the nodal displacement {ū} is represented by

{ū}=[F]{x}, (45)

where {x} are referred to as the generalized displacements. [F] is the modal matrix and
has the orthogonal property as follows:

[F]T[K] [F]= [V2], [F]T[M] [F]= [I], (46, 47)

where [V2] is a diagonal matrix that stores the square of the natural frequencies vi .
Substituting equation (45) into equation (44), and then multiplying equation (44) by [F]T

yields

[F]T[M] [F]{ẍ}+[F]T([C]+ [C*]) [F]{ẋ}+[F]T[K] [F]{x}=[F]T{F}. (48)
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T 1

Material properties PZT G1195N piezoceramics and T300/976 graphite/
epoxy composites

PZT T300/976

Young’s moduli (GPa)
E11 63·0 150·0
E22 =E33 63·0 9.0

Poisson ratio
n12 = n13 0·3 0·3
n23 0·3 0·3

Shear moduli (GPa)
G12 =G13 24·2 7·10
G23 24·2 2·50

Density, r (kg/mg3): 7600 1600
Piezoelectric constants (m/V)

d31 = d32 254×10−12

Electrical permittivity (F/m)
o11 = o22 15·3×10−9

o33 15·0×10−9

Substituting equations (47) and (46) into equation (48) gives

{ẍ}+(2jv+[F]T[C*] [F]){ẋ}+v2{x}=[F]T{F}. (49)

The initial conditions on {x} can be obtained as follows:

{x0}=[F]T[M]{ū0}, {ẋ0}=[F]T[M]{ū· 0}. (50, 51)

4. NUMERICAL EXAMPLES

In this section, numerical examples are presented to verify the proposed finite element
model. A cantilever composite beam with both the upper and lower surfaces symmetrically
bonded by piezoelectric ceramics, as shown in Figure 1, is considered. The beam is made
of T300/976 graphite/epoxy composites and the piezoceramic is PZT G1195N. The

Figure 2. The centerline deflection of the cantilever composite beam with five pairs of actuators evenly
distributed.
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Figure 3. The centerline deflection of the cantilever composite beam with two pairs of actuators located at
the left end and middle span of the beam.

adhesive layers are neglected. The material properties given in Table 1 are the same as those
in reference [14]. The stacking sequence of the composite beam is [−45°/45°]s. The total
thickness of the composite beam is 9·6 mm and each layer has the same thickness (2·4 mm);
and the thickness of each piezo-layer is 0·2 mm. The lower piezoceramics serve as sensors
and the upper ones as actuators. The relative sensors and actuators form sensor/actuator
(S/A) pairs through closed control loops. The control of the static deformation and the
reduction of the free vibration of the beam under the distribution piezoelectric S/A pairs
are studied.

4.1.  

The composite beam is subjected to a steady concentrated force of 4 N at the free end.
In the analysis, the beam is divided evenly into 30 elements. In the case of shape control,
all the piezoceramics on the upper and lower surfaces of the beam are used as actuators.
Equal-amplitude voltages with an opposite sign are applied to the upper and lower
piezoelectric layers respectively to control the deformation of the composite beam
subjected to the concentrated load. Due to the converse piezoelectric effect, the distributed

Figure 4. The centerline deflection of the cantilever composite beam with one pair of actuators located at the
left end.
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Figure 5. The centerline deflection of the cantilever composite beam with one pair of actuators at different
position (V=200 V).

piezoelectric actuators contract or expand depending on negative or positive active voltage.
In general, for an upward displacement, the upper actuators need a negative voltage and
the lower actuators need a positive one.

To investigate the effect of the number of actuator pairs on the deformation control,
three sets of actuator pairs are considered: all the five pairs of actuators, two pairs (the
left and the middle ones) and one pair (the left one). The calculated centerline deflections
of the composite beam in the elevated environment with different pairs of actuators and
different active voltages are shown in Figures 2–4. The comparison of the figures reflects
the fact that a lower voltage is needed to eliminate the deflection caused by the external
load when more actuators are used. It is shown in Figure 2 that the beam cannot be
smoothly flattened with five pairs of actuators. When one pair of actuators is used, as
shown in Figure 4, a very high active voltage is needed to quell the deformation and the
beam is also not smoothly flattened. In Figure 3 it is shown that, under a certain active
voltage, the beam can be flattened quite smoothly by two pairs of actuators. This fact
indicates that, under some conditions, it is not appropriate to cover structures entirely with
piezoelectrics from the view of efficiency and economy.

Figure 6. The effect of negative velocity gain on the cantilever composite beam subjected to first mode
vibration (five pairs of S/As). Gain=0 V/A.
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Figure 7. The effect of negative velocity gain on the cantilever composite beam subjected to first mode
vibration (five pairs of S/As). Gain=−1·0E4 V/A.

The calculated centerline deflection of the composite beam with one pair of actuators
at different positions is shown in Figure 5. A constant active voltage of 200 V with an
opposite sign is applied on each actuator. The external force causing the mechanical
deformation is the same as before. It is seen from Figure 5 that the location of the actuators
has a significant effect on the control of the deformation. When the actuators are located
at the free end of the cantilever beam (the right end), they are not useful in flattening the
deformation. It is also clearly shown in Figure 5 that the actuators have a greater effect
on flattening the deformation when the located position is closer to the fixed end (the left
end). The actuators have the greatest effect when they are located on the fixed end.
Compared to the effect of the number of actuators on the control of the deformation, the
location of actuators plays a much more important role.

4.2.   

The same piezoelectric composite beam given in Figure 1 is considered again to simulate
the active vibration suppression through a simple S/A active control algorithm (negative
velocity feedback). It is assumed that the cantilever beam is vibrating freely due to an initial

Figure 8. The effect of negative velocity gain on the cantilever composite beam subjected to first mode
vibration (five pairs of S/As). Gain=−2·5E4 V/A.
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Figure 9. The effect of negative velocity gain on the cantilever composite beam subjected to first mode
vibration (five pairs of S/As). Gain=−5·0E4 V/A.

disturbance (first mode) of d(0) at the free end. The piezoceramics on the lower surface
serve as sensors, and those on the upper surface are chosen as actuators. In the analysis,
the whole beam is evenly divided into 30 elements, and each S/A pair covers six elements.

First, the modal superposition technique is used to decrease the size of the problem. The
first six modes are used in the modal space analysis and an initial modal damping ratio
for each of the modes is assumed to be 0·9%. Second, the transient response of the
cantilever beam is computed by the Newmark direct integration method. The parameters
g and b are taken as one-half and one-quarter respectively.

In Figures 6–9 are shown the effects of negative velocity feedback control gains on the
transient response of the cantilever composite beam subjected to the first mode vibration.
Five S/A pairs are used in the vibration suppression. As shown in the figures, the vibrations
decay more quickly when higher control gains are applied. However, it must be noted that
the gains should be limited for the sake of the breakdown voltage of the piezoelectrics.

Similar to the shape control simulation, three sets of S/A pairs are considered in order
to evaluate the effect of the number of S/As on the active vibration suppression: all the
five pairs of S/As, two pairs (the left and the middle ones) and one pair (the left one). The

Figure 10. Decay envelopes of the tip displacement d(t) for the cantilever composite beam with different pairs
of S/As (Gain= −5·0E4 V/A). –×–, Uncontrolled; —,—, five pairs; —, two pairs; –w–, one pair.



0.20

1.0

–1.0
0.00

Time (s)

R
el

at
iv

e 
ti

p 
de

fl
ec

ti
on

, δ
(t

)/
δ(

0)

0.5

0.0

–0.5

0.05 0.10 0.15

. .   .648

Figure 11. Decay envelopes of the tip displacement d(t) for the cantilever composite beam with one pair of
S/As at different positions (gain=−5·0E4 V/A). —, Uncontrolled; —,—, left; –×–, middle; –w–, right.

decay envelopes of the tip displacements for the cantilever beams with different pairs of
S/As are shown in Figure 10. The control gain is −5·0×104 V/A for all three sets of S/As.
The comparison shows that the vibrations are damped out more quickly with more S/A
pairs. However, compared with the previous simulation, the effect of the number of S/As
on the active vibration suppression is not as significant as on the shape control.

In Figure 11 are shown the decay envelopes of the tip displacements for the cantilever
beams with one pair of S/A at different locations: at the right, the middle and at the left
positions. The control gain is −5·0×104 V/A for the three different locations. It is seen
that the position of S/A pairs is very important in vibration control: when the S/A is
located at the free end (the right end), it is nearly useless in vibration suppression; on the
contrary, the S/A pair has the best effect on vibration suppression when it is located at
the fixed end. It can be concluded theoretically from the direct piezoelectric equation and
practically from the comparison that the S/A pairs should be placed in regions of high
average strains and away from areas of low strains. As for the vibration control of
cantilever beams, for maximum effectiveness, the S/A pairs should be located as near to
the fixed end as possible.

5. CONCLUSIONS

Based on third order laminate theory, an efficient and accurate finite element model for
the active vibration control of laminated composite beams containing distributed
piezoelectric S/As is developed. The negative velocity feedback control algorithm is used
in the model to couple the direct and converse piezoelectric effects. The shape control and
vibration suppression of a cantilever composite beam are investigated by using the model.
The investigation shows that in designing smart structures with distributed piezoelectric
S/As, the number and location of the S/As must be considered carefully. Two important
points are revealed as follows:

(i) The positions of S/As have a critical influence on both the shape control and the
vibration suppression of smart structures. For maximum effectiveness, the S/A pairs must
be placed in high strain regions and away from areas of low strains.

(ii) The number of S/As has a great effect on the performance of smart structures. More
S/As can usually induce greater efficiency on both the shape control and vibration
suppression.
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